What are Microbial Fuel Cells?
The key difference of course is in the name, microbial fuel cells rely on living biocatalysts to facilitate the movement of electrons throughout their systems instead of the traditional chemically catalyzed oxidation of a fuel at the anode and reduction at the cathode.
The magic behind MFC's can be distilled down to two words: cellular respiration. Nature has been taking organic substrates and converting them into energy for billions of years. Cellular respiration is a collection of metabolic reactions that cells use to convert nutrients into adenosine triphosphate (ATP) which fuels cellular activity. The overall reaction can be considered an exothermic redox reaction, and it was with this in mind that an early Twentieth century botany professor at the University of Durham, M. C. Potter, first came up with the idea of using microbes to produce electricity in 1911.
While Potter succeeded in generating electricity from E. coli, his work went unnoticed for another two decades before Barnet Cohen created the first microbial half fuel cells in 1931. By connecting his half cells in series, he was able to generate a meager current of 2 milliamps. By 1999, researchers in South Korea discovered a MFC milestone. B.H. Kim et al developed the mediator less MFC which greatly enhanced the MFC's commercial viability, by eliminating costly mediator chemicals required for electron transport. Microbial fuel cells have come a long way since the early twentieth century.
Comments
Post a Comment